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The reflection of a train of two-dimensional finite-amplitude internal waves propa- 
gating at  an angle /? to the horizontal in an inviscid fluid of constant buoyancy 
frequency and incident on a uniform slope of inclination a is examined, specifically 
when /? > a. Expressions for the stream function and density perturbation are 
derived to third order by a standard iterative process. Exact solutions of the 
equations of motion are chosen for the incident and reflected first-order waves. Whilst 
these individually generate no harmonics, their interaction does force additional 
components. In  addition to the singularity at a = /? when the reflected wave 
propagates in a direction parallel to the slope, singularities occur for values of a and 
/?at which the incident-wave and reflected-wave components are in resonance; strong 
nonlinearity is found at  adjacent values of a and /?. When the waves are travelling 
in a vertical plane normal to the slope, resonance is possible at second order only 
for a < 8.4' and /? < 30'. At third order the incident wave is itself modified by 
interaction with reflected components. Third-order resonances are only possible for 
a < 11.8' and, at a given a, the width of the /?-domain in which nonlinearities 
connected to these resonances is important is much less than at  second order. The 
effect of nonlinearity is to reduce the steepness of the incident wave at which the 
vertical density gradient in the wave field first becomes zero, and to promote local 
regions of low static stability remote from the slope. The importance of nonlinearity 
in the boundary reflection of oceanic internal waves is discussed. 

In  an Appendix some results of an experimental study of internal waves are 
described. The boundary layer on the slope is found to have a three-dimensional 
structure. ' 

1. Introduction 
It has not, as yet, proved possible to account satisfactorily for the mid-depth ocean 

diapycnal diffusivity of about 1 om2 s-l required by the global budget calculations 
of Munk (1966); see Garrett (1979). Recently however Eriksen (1985) has drawn 
attention to a possible contribution resulting from the reflection of internal gravity 
waves at sloping ocean boundaries. He suggests that their transformation in 
wavenumber space and the enhanced energy flux which can occur at certain 
frequencies, may lead to wave breaking and hence to a generation of turbulence 
sufficient to account for much of the diffusion which must occur a t  mid-depth. 

Eriksen's argument rests on both estimates and observations. The former are based 
on a linear theory of wave reflection which predicts the modification to an ambient 

t Present address: Department of . . .  Oceanography, The University, Southampton SO9 5NH, UK. 



280 8. A. Thorpe 

wave spectrum by the reflection of component waves at a sloping boundary. A 
distorted spectrum results. It is however observed (Eriksen 1982) that beyond a few 
hundred metres from sloping topography, the internal-wave spectrum has approxi- 
mately a universal form independent of position; anomalies are found only close to 
slopes. Eriksen argues that some of the energy flux from the distorted spectrum must 
be dissipated close to the boundary by wave breaking, and he points out that only 
a small fraction of the flux involved in this adjustment needs be used in diapycnal 
mixing to account for the canonical Munk estimate. 

Precise calculation of the effects of the reflection process is however hampered by 
the lack of knowledge of the conditions which favour wave breaking and the efficiency 
of breaking in transferring kinetic to potential energy (Thorpe 1987), and particularly 
of the nonlinear consequences of internal-wave reflection. It is this nonlinear aspect 
which we address here in the hope of understanding more clearly the conditions 
which may favour wave breaking. For simplicity we focus attention primarily on a 
two-dimensional wavetrain in a non-rotating semi-infinite fluid of uniform density 
gradient with motion in a vertical plane normal to an infinite inclined plane boundary, 
this being a simple point of departure for a more detailed investigation. The linear 
reflection was discussed by Phillips (1966). Subsequent analytical and experimental 
work, principally by Wunsch and Cacchione, will be described when reference is 
appropriate. Some additional laboratory experiments have been made in connection 
with the present study, and these are described in Appendix C. 

2. Analysis 
2.1. Properties of an exact solution for a progressive wavetrain 

The reflection of a monochromatic (i.e. single-frequency) train of two-dimensional 
internal gravity waves in an inviscid non-rotating incompressible Boussinesq fluid 
of constant density gradient from a uniform slope normal to their plane of motion 
may be characterized by three parameters. These are 

(i) the angle between the slope and the horizontal a, 
(ii) the angle between the incident wave group velocity and the horizontal 8, and 
(iii) a measure of the steepness of the incident waves s. 

The angle 8 is given by 

(1) 
U 

sinp = -, 

(Phillips 1966), where u is the incident-wave frequency and No is the constant mean 
buoyancy frequency of the fluid. The ratio of the horizontal and vertical wave- 
numbers of this incident wavetrain, k and n respectively, is given by 

NO 

U2 - tan2P. 
k2 

n2 q - u 2  
_ -  

The stream function $ = a sin(kz+nz-ut), (3) 

and density perturbation 
N2 ak  

9 u  
p = p,A-sin(kx+nz-at), (4) 

to the density field po( 1 -Po z / g ) ,  is an exact solution of the full nonlinear equations 
of motion describing a train of freely propagating waves. Here po is a reference 
density, g is the acceleration due to gravity and x, z are horizontal and vertically 
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upward axes respectively. The displacements of density surfaces from the reference 
density po( 1 - Nz, z /g )  is c(z, z, t )  where 

a k  5 = - sin (kz + n(z + g) - at) 
U 

and max (Q = ak /a  = A is the wave amplitude. It follows that even though the 
stream function is sinusoidal, isopycnal displacements at finite amplitude are 
asymmetrical. The isopycnal slope found by differentiating ( 5 )  is 

a[ 
az l-Ancos(kz+n(z+y)-at)’ 

Ak cos (kz + n(z + 5)  -at _ -  - 

Static instability occurs when the local buoyancy frequency N given by 

g ap P=#---= %[l-Ancos(kz+nz-at)] 
Po 

becomes negative, that is when An > 1. It is thus natural to characterize the wave 
steepness by s = An, so that the maximum wave slope is 8 tan/3/( 1 - 8 )  if s < 1 or 
is infinite if s 2 1. (It is pertinent to note that the local Richardson number, 

~i = iv/(ae+/az2)2, 

is given by (7) 

where y = cos (kz + nz - at) and, for 0 < s < 1, J = min (Ri) is given by 

(8) 
1 

J =  
2 cos2 (1 -N( 1-8 ) )  ’ 

which is 2 4, so that even in a slowly varying flow where it might be applicable, the 
MileeHoward necessary conditions for instability, J < a, cannot be achieved.) 

The stability of the hite-emplitude wavetrain to parametric disturbances has 
been considered by Mied (1976). In  yhat  follows we shall assume that the incident 
wavetrain is itself stable in the absence of reflection or, if unstable, becomes so only 
on a timescale much in excess of that involved in the process of reflection. 

2.2. Linear reflection 
We have chosen to consider a wave given by (3) and (4) incident on a slope of angle 
a. It is convenient to transfer axes zf and z’ located up the line of greatest slope and 
normal to the slope (figure l), and to take wavenumbers k‘, n‘ measured relative to 
the new coordinates. The fluid reference density is now Po[( 1 -*(zfc, +z’s,)/g)] where 
s,, ca are sina and cosa respectively and the wavenumbers are related by 

k = re,-n’s,, n = k’s,+n‘c,. (9) 

+ = a sin(kz+nz-at) (10) 

(11) 

Dropping the superscripts, the equations for the incident waves, (3) and (4) become 

and p = -a(kc,-ns,) Nz, sin(kz+nz-at), 
PJ 

where here, and later, we have normalized p by dividing by po. 
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FIGURE 1. Sketch showing the incident (subscript I) and reflected (subscript R) firet-order 
waves and their phase (C,)  and group (C,) velocities. 

The dispersion relation becomes 

a2 (kc, - ns,)2 
3-  k2+n2 

= SJ _ -  

(where sa = sinfl), which has two roots for n,  

k 
n, = - (sin 2/?- sin 2a) 

2Y 

(14) 
k 

and nR = --(sin2/3+sin2a), 

where y = sJ- st. 
Recalling the relation between the directions of the group velocity and phase 

velocity for internal waves (Gortler 1943; Mowbray & Rarity 1967; see figure l), we 
see that a wave with positive n has a downward group velocity, towards the slope. 
For the purposes of illustration and to be definite in ascribing signs, we suppose that 
/3 > a and k > 0. Then nI is positive and nR negative. We ascribe nI to the incident 
wave, and the principal reflection is then up the slope as illustrated in figure 1. (If 
/3 < a the incident wave is reflected downslope.) 

2y 

The boundary condition on the slope is that there is no normal velocity; 

_-  - 0  a t z = o .  
ax 

The equations of motion can be written as vorticity 

and conservation of density 
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which can be combined as 

The stream function (10) and density (1 1) satisfy these equations exactly when n is 
given by (13) or (la), and the difference of these exact solutions, 

+kl = a[sin (kx + nI z - a t )  - sin (kx + nR z- at )] ,  (19) 

P a  
gfl 

pl = 0 [(kc, - n, 8,) sin (kx + nI z- at) - (kc, - n, 8,) sin (kx + n, z- d)],  (20)  

satisfies the boundary condition (15). This is the linear solution, essentially that 
proposed by Phillips (1966). 

The singularity in nR when a = B (y = 0) when the reflected waves are directed 
parallel to the slope has been discussed by Wunsch (1969) and Eriksen 
(1985). The non-dimensional density gradient P/* is bounded below by 
1 -A{lks, + n, cal + Iksa+ n, c,l} and the steepness of the incident wave is s = A 
(kS,+n1Ca), or, using (13), Akcp sin(p-a)/y. 

2.3. HiSher-order solutions 
Although the incident and reflected linear waves individually satisfy (16)-( 18), 
interaction between these waves occurs through the terms on the right-hand side of 
the equations. We now set up an iterative method of solution, regarding @l and p1 
as being the first-order approximation, and successively generating higher-order 
terms, $,, @3, .  .. , in @ = C@., by solution of (18) together with the boundary 
condition (15), and in p(p2,p3, ...) by solution of (16) and (17) selecting, where 
appropriate, solutions representing waves which radiate their energy away from the 
boundary. 

At second order the product terms on the right-hand side of (18) produce 
contributions to @ with coefficients containing uB (a may be regarded as an ordering 
parameter) and sinusoidal in (Zkz + (nI + nR) z - 2 4  and (n, - nR) z (see table 1 ). The 
latter term provides a steady Eulerian flow parallel to the slope but which is found 
to be zero in a Lagrangian framework (as it must to preserve the density field - there 
is no diffusion in this formulation, unlike the studies of Phillips 1970, and Wunsch 
1970 in which currents are induced by diffusion), together with a perturbation to the 
density field corresponding to a set-up of the isopycnal surfaces (see also Wunsch 
1971). The former term may be a free wave if vector wavenumber and frequency 
(2k, nI+n,,2a) satisfy the dispersion relation (12) ,  in which case the incident and 
reflected waves will interact resonantly with the forced second-order mode. This is 
possible only for sufficiently small a, less than 8.4' (see figure 2) .  

Resonance only occurs for particular wavenumbepfrequency combinations de- 
scribed below and, in general, to satisfy the boundary condition (15), it is necessary 
to introduce the free wave (2k, m8, 2 4  which satisfies the dispersion relation and 
which radiates away from the boundary; 

10 F L M  178 
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z-wave- 
s-wavenumber number 

First-order components 
k n1 

k nR 
Second-order components 

2k nI + nR 

0 nI-nR 

2k m4 
(N.B. no (2k, 2n, 2a)  terms) 

Third-order components 
3k 2n1 + nR 

3k 
k 
k 
3k 

3k 
k 

k 
k 

2nR + nI 
2n, - nR 
2nR - nI 
ma + 121 

k nR 

3k m8 

Frequency Comments 

u Incident wave 
a 'Free wave' 

2 a  Forced wave; may form one of 
resonant triad with 
first-order pair (figure 2 )  

Steady flow parallel to slope 
Required to satisfy b.c. at 

Free wave if 2 a  < No. 
Evanescent if 2u > No (B > 30') 

0 
2 a  

2 = 0. 

3 a  May form resonant triad with 
first-order incident and 
second-order forced wave 
(figure 5 )  

' z }  No resonance possible 

30 
U 

May form resonant triad with 
first-order incident and 
second-order free wave 
(figure 6) 

3 a  No resonance possible 
u Resonant at second-order 

a No resonance possible 
a 

a (i) nR modified 

resonance 

Forces a modification to nI 
(if k, a are held constant) 

(ii) component required to 

Required to satisfy b.c. at  

Free wave if 3 a  < No. 
Evanescent if 3 a  > No (B > 19.47') 

satisfy b.c. 
3 a  

z = 0. 

TABLE 1. Sequence of wave components up to third order 

This wave mode is evanescent when 4s; > 1, that is when /3 > f or 2u > No, and is 
an exact solution of the equations (10)-(18). The forced wave (2u, nI+nR, 2u) is not 
an exact solution and will develop its own harmonics at higher even orders. 

The second-order solution is given in Appendix A, together with expressions for 
the mean Eulerian flow, the set-up of isopycnal surfaces and the apparent density 
flux resulting from wave reflection. In the (singular) limit a = 0, there is no 
interaction between the first-order waves, and no Eulerian flow, although in this case 
there is a (horizontal) Lagrangian flow (see Thorpe 1968). As an example, figure 3 
shows the waves at second order for a = 20', B = 37.9' and s = 0.070. (The values 
are chosen for later comparison with experiment; see Appendix C.) These values of 
a and /3 are remote from possible resonance (figure 2). The solutions are dominated 
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J 
0 

10 20 30 

B (degrees) 

FIQURE 2. The loci of points in the (a,p)-plane where conditions of resonance are found at second 
order. The effect of variation in the parameter f / N ,  where f is the local inertial frequency are shown. 

by the large-amplitude reflected first-order wave, and the second-order contributions 
are small even though the steepness of the composite reflected and incident waves 
is large. The conditions of second-order resonance (and hence values of a and B at 
which second-order terms are likely to be very important) when the incident 
wavetrain propagates with a component along the slope, are considered in Appendix 
B. The angles a at which resonance occurs for a given B increases as the along-slope 
wavenumber increases. 

At higher orders there is a proliferation of terms which are harmonics in x and t 
and with z-wavenumbers which are sums and differences of n,, nR and ma or integer 
multiples of these terms, together with additional ‘free waves’ (jk, m,,ja), 
j = 3,4, .  . . , where m, is given by 

with 2 = jk, m = m, and Z: = ja. The terms generated at third order are summarized 
in table 1. Products of the second-order (2k, nI + nR, 2a) and first-order (k, nI or nR, a) 
wave terms lead to the generation of terms on the right-hand side of (18) with 
vector wavenumber and frequency ( k ,  nR or n,, and a) identical with those of the 
first-order waves; in the field of the reflected waves it is no longer possible to retain 
the form of the incident wave with the exact solution (3). We suppose, to be specific, 
that the wavenumber parallel to the slope and the frequency of the incident wave 
are prescribed as, for example, they might be in an experiment in which a wave-maker 
is aligned parallel to the slope producing periodic and sinusoidal waves along its 
length but absorbing all reflected waves. For the terms in question, (18) becomes 

a a a  a 
s V a $ 3 1  4- ( C a z - s a g )  $sl = @[sin (kx+ nI z- at) - sin (kz+ nR -at)], (23) 

when /3 G 30°, where @ = 4a3kesa $( 1 - 4s#/(y2D) and D is given in Appendix A. 

like 4, can be expanded; nI = nI1 +n,,+ . . . (similarly nR), where n,,, nR1 are given 
by (13) and (14) respectively, and the terms are successively ordered with powers of 

( D  = 0 is the condition for secon B -order resonance.) We now suppose that nI and nR, 

10-2 
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J?IWJRE 3. Wave reflection when a = 20°, = 37.9" and 8 = 0.070. (a) shows the incident waves, 
(b)  the incident and reflected wave at first order, (c) the incident and reflected waves, including 
the second-order terms which are shown in (d). 
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B (degrees) 
FIQURE 4. The locus of points in the (a, /3)-plane at which a second-order correction to the 

wave number n1 is appropriate (see (26)). 

B (degnes) 

FIQURE 5. The locus of points in the (a, &plane for which the third-order (3k, 2n, + nB, 3 4  
wave is resonant. 

a. Then substituting (19) into (23) and equating coefficients to order a2, as we find 
that n12 = nR2 = 0 and 

@ 
n -  

Is - 2v2a[nIl 8; - at( kc, - nIl aJ2] ’ 

lZR3 = 2a2a[nR1 s$-sz(kcE-nRl * 

@ 

The denominator in (25) is non-zero. However, that of nIB is zero when 

S i (  1 - 8;) 

1+3s; ’ s: = 

(24) 
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1s 

I0 

a (degrees) 

5 

I 
10 

B (degrees) 

J 
20 

FIQURE 6. The locus of points in the (rr,/3)-plane for which the third-order (3k, n,+m,, 317) 
wave is resonant. 

(see figure 4) and at  these values we find 

s &  -B 
n12 - a(ay)i' 

(@ is positive when (26) is satisfied). 
As at second order, the boundary condition (15) at z = 0 is satis..jd by introducing 

radiating free modes. The terms of slope wavenumber k and frequency a are catered 
for by adding terms in as to the coefficient of the linear radiating waves (k ,  nRr, a), 
whilst those of wavenumber 3k and frequency 3 a  are matched by a wave (3k, m3, 3 a )  
with m, being the negative root of (22) : 

3k[s, C ,  + 3~,9( 1 - 9~2)+] 
m3 = - 

9s; - s; 

This wave is evanescent if ss > f (/3 > 19.4' or 3 a  > No) .  
Resonances possible between first-, second- and third-order waves are noted in 

table 1 and the (a,B)-curves on which they occur are shown in figures 5 and 6. 
Third-order resonances are only possible for 01 < 11.8', the largest value of a in the 
resonance curve of figure 6. The full third-order solutions for /3 < sin-l (f) are given 
in Appendix A. 

3. Discussion 
As table 1 shows, the effect of increasing the order of the solution is rapidly to 

generate more terms. The ratios of the z-wavenumbers of these terms are, in general, 
irrational numbers so that the wavefield becomes more disordered with energy being 
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RQURE 7. Wave reflection when a = lo", = 18' at 8 = 0.060. The lowest part (a) shows the 
first-order incident wave, (b)  shows the firat-order incident and reflected waves; (c) and (d) show 
the incident and reflected waves at second and third order respectively. 

scattered in z-wavenumber, whilst the motion continues to be periodic in time and 
in the coordinate parallel to the slope. The labour (and possibility of error) in 
extending the calculation algebraically to higher orders is daunting, and we have not 
attempted it, being content in this study to illustrate the major features which result 
from finite amplitude. 

Figure 7 is an example of waves produced when a = lo", /? = 18" and s = 0.050, 
and is typical of the results obtained. Although the general features of the linear 
solution can still be detected as 8 increases, steep waves develop in local regions at 
some distance remote from the slope. 

Figure 8 shows the 'critical' steepness, s = a,, of the incident wave at which the 
slope of isopycnal surfaces calculated to first, second, and third orders first becomes 
vertical somewhere in the fluid, and beyond which the theory predicts that regions 
of static instability will develop. We do not claim that these estimates provide 
accuratc predictions of the onset of static (and certainly not dynamic) instability 
although it is worth recalling that the onset of static instability in the (exact solution) 
first-order incident wave can be found exactly (equation (6)). Their value is rather 
to establish, as we shall see, the rather slow rates of convergence and to illustrate 
the range of variation. (We might equally well have taken some other, less severe, 
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0.2 

SC 

0.1 

FIQURE 8. For caption see facing page. 
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FIGURE 8. The steepness of the incident first-order waves 8, at which isopycnals first become vertical 
somewhere in the fluid at various values of a (specified on each curve in degrees) aa /3 varies. 
(a) First-order waves, a < /3Q 30', (b) second order, a < /3 Q 30°, (c) third order a < /3 < 19.47'. 
(d) The corresponding steepness of the incident wave calculated to third order. 

criteria ; see later.) The features resembling downward-pointing cusps appearing in 
figure 8 at second and third orders where, according to the calculations, s decreases 
towards zero, are at values of B where resonance occurs and where the solutions 
become invalid. The width of the band of incident-wave directions B affected by the 
second-order resonances (figure 8b)  is about 1' at a = 3' and 1.5' at a = 6" at second 
order (figure 8 b ) ,  but somewhat broader at  third order (figure 8c). The predicted 
8-width at third-order resonance is much less, typically 0.2'. In  figure 8 ( d )  is shown 
the steepness 8; of the incoming (k, nI, a) wave which now includes the third-order 
modification (equation (24)). For some values of a, B (for example a = 3', 
4" < B < 5') 8; > xc and 8; is closer to the second-order value of 8, (figure 5b)  ; here 
the third-order effects are less severe than suggested by sc, but in general the converse 
is true. The decreasing B-width at resonances as the order of the expansion increases 
suggests that, although the number of possible 'resonances' increases as the order 
of the expansion increases, their width decreases in such a way that bounded solutions 
may be found over most of the (a, P,s)-domain but this should be re-examined in 
a more comprehensive theory. For a = 15' andB N 17.8', the condition (26) is almost 
satisfied and n19 becomes of magnitude comparable with nI1, so that the incident slope 
become ill-defined to third order. 

The effect of increasing order is to reduce the critical steepness significantly, 
demonstrating the influence of finite-amplitude effects (although providing no 
plausible demonstration of rapid convergence!). Such a test of the effects of finite 
amplitude is however extreme. In  figure 9 we have instead displayed the value of s 
at which the sum of the second- and third-order contributions to the wave steepness 
become equal to a tenth of those contributed by the first-order terms. This shows 
that finite-amplitude effects become significant even when the incident-wave steep- 
ness is quite small. Figure 10 shows the modulus of the ratio of third-order to 
second-order terms T for the same value of 8. Although generally less than unity, large 
values are found in the vicinity of the resonant singularities, and here it appears that, 
even at small slopes, additional terms may be required to provide reliable predictions 
near such points. The abrupt jumps in s and T (e.g. those bordering the second-order 
resonances at a = 3' and 6') in figures 9 and 10 are due to an interchange between 
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0.03 

S 

0.02 

0.01 

20 

FIQWE 9. The steepness of the incident first-order wave s at which the sums of the second- and 
third-order contributions to the maximum wave steepness became equal to 0.1 times those 
contributed by first-order terms at various values of a: (a) a = 3', lo', (a) a = 6', 16', plotted aa 
functions of !( < 19.47'). 

the two possible roots of the quadratic equation implied by the condition that the 
contributions of the second- and third-order terms to the wave steepness be a tenth 
of that of the first order. 

There is another, more subtle, effect near resonance points. Since the velocity 
normal to the slope is zero at z = 0, the solutions for $ which correspond to forced 
waves are matched by free waves and, as resonance is approached, these have not 
only equal large magnitude, and phase and along-slope wavenumbers, but almost 
equal slope. Hence the distance z before they become out of phase and at which their 
individual contributions to the wave slope become significant, increases as resonance 
is approached. The reduction in 8 near resonance shown in figure 9 is thus generally 
achieved at the expense of increasing the distance from the slope a t  which local 
conditions of static instability are likely to occur. 
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5 

4 

r 

3 

2 

1 

C 

5 

FIQURE 10. The modulus of the contributions to the wave steepness from third-order terms divided 
by those of second-order terms, r,  in the same conditions aa in figure 9. 

4. Summary, and reflection at ocean boundaries 
The effect of finite amplitude is to reduce the slope of the incident wave at which 

static (or dynamic) instability is probable, particularly in regions of the (a,/?)- 
domain where resonance occurs, to distribute energy more widely in wavenumbers 
normal to the boundary, and to promote local static instability in regions remote from 
the boundary. In  laboratory experiments (see Appendix C) instabilities are also found 
very close to the boundary slope which appear to differ from those reported by 
Cacchione & Wunsch (1974). 

The effect of resonance on internal waves is well known (e.g. Martin, Simmons & 
Wunsch 1972; McEwan 1971 ; McEwan, Mender k Smith 1972). It is remarkable that 
the low-order conditions of resonance between incident and reflected waves shown 
in figures 2,443 and 11, where nonlinear effects are likely to be most significant, occur 
only for low bottom slopes a - the conditions most common in the ocean - and at  
modest values of /? where the oceanic internal-wave field is most energetic (i.e. at low 
frequencies). In the ocean the effect of resonance will be modified by the efficiency 
of reflection at the boundary (it may for example be affected by the reduced density 
gradients and by enhanced levels of turbulence in the benthic boundary layer, 
especially when the incident or reflected wavelengths normal to the boundary become 
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comparable with the boundary-layer thickness) and the magnitude to which the 
effects of resonance may grow will be limited by the non-stationary character of the 
internal-wave field. Account must be taken of the interaction between the primary 
incident wave, its reflected components and other waves present. The possibility of 
resonance will be modified by the effects of the Earth’s rotation which introduces the 
additional parameter, f / N o .  (An effect of rotation is shown in figure 2 and 11 b ;  it 
reduces the range of angles a and at which resonance can occur.) Bottom roughness 
may require study, especially when the wavelength of the roughness is comparable 
with that of the waves (Baines 1971 ; Mied & Dugen 1976). The effect on resonance 
of viscosity and three-dimensionality (see Eriksen 1982, and Appendix B for further 
discussion) must be taken into account. Since, however, the root-mean-square 
internal-wave steepness estimated following the procedure described by Garrett & 
Munk (1972) is about 0.06, the results (e.g. figure 8) lend support to Eriksen’s 
conclusion that conditions favouring internal-wave breaking will frequently occur 
near sloping ocean boundaries. 

I am grateful to Dr Howell Peregrine for a remark which helped to clarify the 
interpretation of wave interaction at third order. 

Appendix A. Second- and third-order solutions 
Second-order solution 

The stream function is 

ss cs sin (nI - nR) z, 
a2k2 

$2 = B[s,-sin (2kz++n,+nR)z-2at)]--  
UY 

where 

and 
sin(2kx+m2z-2at, 2u < No, 

e-mrz sin(2kz+rniz-2at), 2a > No, 
a* ={  

where m, = 4 k a ( 4 a 2 - N $ / ( 4 a 2 - ~ s 3 ,  and mi = - 2 k ~ s , c , / ( 4 a 2 - ~ s ~ ) .  The 
curve D = 0 gives the condition for resonant interaction and is shown in figure 2 .  
The normalized density is 

c, ss cs sin (nI - nR) z 
2a2k3 

SY2 
-- 

V B  
-(2kca-m2s,) sin(2kz+m2z-2at), 2u < No, 
2Vj  

mi e-mrz[2asa sin (2kz+ mi z - 2 a t )  
2B 

9 
-- 

+ca(4a2-4 )4  cos(2kx+miz-2at)] ,  2a > No. 

The mean Eulerian current parallel to the boundary is thus 
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which can be written 
- Azkucj (cos 2a - cos 2b) 

sg sin3 (/3- a)  
u = -  
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where ( k , n )  are the horizontal and vertical incident wavenumbers and A is the 
incident-wave amplitude. This is unchanged in a rotating system. An incident 
internal wave thus drives an Eulerian off-slope flow at z = 0. 

It may similarly be shown that the set-up of isopycnal surfaces is 

- Azk (cos 2a - cos 2b) c, cB sin( 2ns B z ) 
2 sin3 (b- a)  sin (b - a)  c z  =- 

and the apparent up-slope density flux (neglecting that carried by the Eulerian 
current) is 

A% F=-- c, cB (cos 2a - cos 218) sin( 2ns * E ). 
2 7 ’ 0  sg sin2 (b - a)  sin (b - a)  

Third-order solution; /l< sin-’ (4) 
The coefficients of terms for the stream funcion ern are as follows: 

A, (4 - B,) 
9 ( 3 k ,  2n, + n,, 3 4  ’ 

[sin (3kx+ (2n1+n,) z--at)-sin (3kx+mrnz-3at)]:- 

where 
2a3ks(nR - n,) sa c i  sB 

YD 
A,  = ’ 

B3 = cg sa(sj + 5s: s j  + s: - 78;) ; 

B2 = ~ c , s ~ ( ~ s ~ - ~ s ~ s ~ - ~ s : - s ~ ) ,  

A,(B, + Bs) [sin (3kx+ (2n, + n,) z- 3 d )  - sin (3k+ m3 z- 3at)l:- 

[sin (kx  + (2n, - n,) z - ut) -sin (kx  + n, z - at)]  :- 

9 ( 3 k ,  2n, + nI, 3a)  ’ 

A2 

F ( k ,  2% - %’ a) ’ 

where 

-A2 [sin (kx  + (2n, - n,) z - at) - sin (kx + nR z- at)] :- 
9 ( k ,  2n, - n,, a) ’ 

[sin (3kx+ (nI+m,)z-33at)-sin(3kx+m3z-3at)]:- 

akuB(2nI-m2) [6(nf-3k2-m3- (2n,-m,)(3kc,-(nI+m,) s,)/sj] 
4 9 ( 3 k ,  nI+m2, 3 4  , 

[sin (3kx+(nR+m,) z-3ut)-sin (3kx+m3z-3ut)]:- 

akuB(2nR-mm,)[6(m:+3k2-n~)+ (2nR-mm,) (3kca- (nR+m,) s,)/s$] 

49(3k,n,+m,, 3a) 1 

[sin (kx+ (m, - n,) z-ut) -sin (kx-n, z-at)] :- 

ak~B(2n,-m,)[2(m~+3k2-nf)+ (2nI-m,) (kc,- (m2-n,) s,)/si] 

4 9 @ ,  m.2 - n,, 4 > 
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[sin (kx+(m2-nR)z-ut)-sin (kx+nRz-ut ) ] : -  

The corresponding terms for p3 can be found by multiplying terms in @3 by 
q ( c ,  k , -s ,n,) / (ga,) ,  where k,, ni, a, are the appropriate vector number and 
frequency, and adding the following terms 

- { [ (pl - p2)  -(%? (kc, - nR 8,) (12, - nI) sin (kz +nI Z- at) 
a k x  
2ga CT 1 

+[(PI + P,) - ye7 (kc, - nI 8,) (nR - nI) sin (kx + n, z- at) 1 
1 B + ( v ) k l  -- (kc, - nI 8,) sin (3kx+ (2n, + n,) z- 3at) 

U 

1 B 
+ (v) - - (kc, - nR 8,) sin (3kz  + (2nR + n,) z - 3a t )  

CT 

(kc, - nR 8,) sin ( k z +  (2nR-n1) z- at) 1 
B 
6a 

--8,(2,%1-??&~)~ sin(3kz+(n,+m2)z-3at) 

B 
2a 

+ - #,J2n1 - sin ( k z  + (me - n,) z - at) 

where 

2a2k3c, 88 Cg 
P2 = - x Y e  

Appendix B. Conditions for resonance at second order in more general 
conditions 

We consider the conditions for reflection of a plane wave which is not propagating 
in a vertical plane normal to the line of greatest slope (i.e. the axis z’ of figure 1). 
If now the wavenumber in a direction normal to the axes (z’, z’) in figure 1 is 1 and, 
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(b) 

L = 10.0 

a (degrees) 

15 

I I 

10 20 3c 
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FIQUEE 11. The loci of pointa in the (a, &?)-plane where conditions of resonance are found at second 
order when the dong-elope wavenumber 1 can be non-mm. Values of L = 1/k @re given on each 
curve: ( a ) f / N o  = 0 ;  (b) f /No = 0.2. 

as before, k and n are the wavenumbers in directions x' and z', then the dispersion 
relation becomes 

On reflection the wavenumbers k and I and the frequency r are conserved and the 
z' wavenumbers are found by solving the dispersion relation. Their sum is 
nI + n, = - 28, cJ($ -CT:), where sp = a /N, ,  and is independent of 1. For resonance 



298 S. A .  T h p e  
J 

f f 

(4 

f l  
FIGURE 12. Wave reflection from a beach, a = 20°, /I = 37.9' and s = 0.07. The incident wave of 
the second vertical mode can be seen approaching the beach at the left. Reflection from the 
downward-going component occurs below the dashed line. The four photographs are a t  one- 
quarter-period intervals. The grid below the beach shows 1 cm squares. The bottom of the 
laboratory tank is at the bottom of each photograph, and the free surface of the water is 3.7 cm 
above the top of each photograph. 
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at  second order, the wave of wavenumber vector (2k, 21, n, +n,) and frequency 2a 
must satisfy the dispersion relation. This is so if 

1 2  

where L = l/k. The values of a and /3 at which this condition is satisfied are shown 
in figure 11 (a) for various values of L. 

The effect of non-zero Z is to increaae the values of a( </3) at which resonance, and 
hence strong nonlinear effects, may occur. (An additional branch of the (a,B)-curve 
is found for a > /3, but this caae has been specifically excluded from the present 
discussion.) Resonant values are found only for /3 < 30'. In the limit M L tends to 
infinity, the resonance curves tend towards a = /3 and /3 = 30'. 

If, in addition, the fluid is rotating we have e j  = (a8-fz)/(q-f2) and the 
dispersion relation is 

= N,[(kca - + 12] +f2(kea + ma)' 
k2 + Z2 + n2 

The conditions of second-order resonance can again be found. Those for L = l/k = 0 
are shown in figure 2. The conditions for resonance at f / N ,  = 0.2 at various L are 
given in figure 11 (b). The effect here of rotation is to diminish the ranges of a and 
/3 at which resonance occurs. 

Appendix C. 
A note on observations of wave reflection on a 20' elope 

By S. A.  Thorpe and A. P. Hainea 

We have made laboratory experiments in which progressive internal waves of the 
second vertical mode, generated in a saline fluid of constant density gradient, are 
incident on a uniform sheet of glass forming a slope inclined to the horizontal at 
a = 20'. Earlier experiments by Thorpe (see Turner 1973), Wunsch (1969) and 
Cacchione & Wunsch (1974) have demonstrated how the wave amplitude changes on 
reflection. The latter authors demonstrated the occurrence of an instability manifest 
as a series of vortices with horizontal axes in the boundary layer adjoining the slope 
at the critical frequency when a = 8. 

Figure 12 shows reflection occurring at /3 = 37.9'. The incident-wave displacements 
C = a, cos(kx--d) s inn ,~ ,  where nI = 2x/h and h is the channel depth (27.9 cm), 
can be expressed as the sum of upward- and downward-going waves, 
y = +,[sin (kx + nI z- at) - sin ( kx - nI z - d)], each travelling at angle B to  the 
horizontal and of half the amplitude of the second mode. In  the figure the incident 
second-mode wave can be seen to the left producing displacements in dye bands. 
Within the triangle formed between the slope and the dashed line drawn from the 
foot of the slope can be seen the combined downward-going part of 6 and its reflection ; 
geometrically, the upward-going part of the incident wave cannot reach this area. 
The form and slopes of the waves are in fair agreement with the theoretical estimate 
shown for the same values of 8, a and /3 in figure 3 ; the efficiency of reflection appears 
to be large. 

Wave overturn, when it occurs, generally appears to be well above the beach and 
is on the same scale as the reflected waves, suggesting locally generated conditions 
of static instability rather than a shear flow, or Kelvin-Helmholtz, instability on a 
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scale determined by local shear. We would however caution that the Reynolds 
number of the waves in the experiments is not large (i.e. a: u/v - 20, where v is the 
kinematic viscosity) and may not be sufficient to permit the development of a 
shear-flow instability. 

Although little energy appears to be lost on reflection, effects are seen in the 
boundary layer on the slope. Figure 13 shows a shadowgraph produced by shining 
a parallel beam of light horizontally through the side of the tank (producing the part 
of the image above the slope), and vertically down through the glass slope via a 45’ 
mirror onto a screen on the side of the tank (producing the ‘planform’ image below 
the slope). Although the interpretation of images produced by shadowgraph is 
sometimes ambiguous, it  is apparent that ‘fronts ’ are produced with a left-and-lobe 
structure similar to that described by Simpson (1972), together with a pattern of 
bands aligned up and down the slope, when motion is directed up-slope; the boundary 
layer has a three-dimensional structure. This probably results from the action of 
viscosity in promoting regions of static instability in a narrow shear layer as fluid 
is moved up-slope by the wave motion, advecting dense fluid over the more slowly 
moving fluid near the slope. Up-slope-going motions are thus likely to produce more 
boundary mixing than the down-slope motions. The ‘fronts ’ appear to result in part 
from convergent motion in a direction up the slope, a feature perhaps amplified by 
the presence of the second mode, but absent (or virtually so) from the related 
experiments by Hart (1971) in which an inclined plane was oscillated in its own plain 
in a stratified fluid. The vortices reported by Cacchione & Wunsch in their study of 
a first-mode incident wave on a 15’ slope have not been found in the present 
experiments. 
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